TRIODE-OUTPUT PENTODE

The triode section is intended for use as frame oscillator and A.F. amplifier. The pentode section is intended for use as frame output tube and A.F. power amplifier.

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triode section</td>
</tr>
<tr>
<td>Anode current</td>
</tr>
<tr>
<td>Transconductance</td>
</tr>
<tr>
<td>Amplification factor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pentode section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anode peak voltage</td>
</tr>
<tr>
<td>Anode current</td>
</tr>
<tr>
<td>Transconductance</td>
</tr>
<tr>
<td>Amplification factor</td>
</tr>
<tr>
<td>Output power</td>
</tr>
</tbody>
</table>

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage V_f 6.3 V
Heater current I_f 780 mA

DIMENSIONS AND CONNECTIONS

Base: Noval

Dimensions in mm
CAPACITANCES

Triode section
- Anode to all except grid: \(C_a(g) \) = 4.3 pF
- Grid to all except anode: \(C_g(a) \) = 2.7 pF
- Anode to grid: \(C_{ag} \) = 4.4 pF
- Grid to heater: \(C_{gf} \) = max. 0.1 pF

Pentode section
- Anode to all except grid No.1: \(C_a(g_1) \) = 8.0 pF
- Grid No.1 to all except anode: \(C_g(a) \) = 9.3 pF
- Anode to grid No.1: \(C_{ag_1} \) = max. 0.3 pF
- Grid No.1 to heater: \(C_{g1f} \) = max. 0.3 pF

Between triode and pentode sections
- Anode triode to grid No.1 pentode: \(C_{aTg_1P} \) = max. 0.02 pF
- Grid triode to anode pentode: \(C_{gTaP} \) = max. 0.02 pF
- Grid triode to grid No.1 pentode: \(C_{gTg_1P} \) = max. 0.025 pF
- Anode triode to anode pentode: \(C_{aTaP} \) = max. 0.25 pF

TYPICAL CHARACTERISTICS

Triode section
- Anode voltage: \(V_a \) = 100 V
- Grid voltage: \(V_g \) = 0 V
- Anode current: \(I_a \) = 3.5 mA
- Transconductance: \(S \) = 2.2 mA/V
- Amplification factor: \(\mu \) = 70

Pentode section
- Anode voltage: \(V_a \) = 170 V
- Grid No.2 voltage: \(V_{g2} \) = 170 V
- Grid No.1 voltage: \(V_{g1} \) = -11.5 V
- Anode current: \(I_a \) = 41 mA
- Grid No.2 current: \(I_{g2} \) = 9 mA
- Transconductance: \(S \) = 7.5 mA/V
- Amplification factor: \(\mu g_2 g_1 \) = 9.5
- Internal resistance: \(R_i \) = 16 kΩ
OPERATING CHARACTERISTICS

Triode section as A.F. amplifier

A. Signal source resistance
 Grid resistor \(R_g \) 3 \(\Omega \)
 Grid resistor of next stage \(R_{g} \) 0.68 \(\Omega \)
Supply voltage \(V_b \) 200 170 V
Cathode resistor \(R_k \) 2.2 2.7 k\(\Omega \)
Anode resistor \(R_a \) 220 220 k\(\Omega \)
Anode current \(I_a \) 0.52 0.43 mA
Voltage gain \(V_o/V_i \) 52 51 -
Max. output voltage \(V_{o \text{ max}} \) 26 25 \(V_{RMS} \)
Distortion \(d_{\text{tot}} \) 1.6 2.3 %

B. Signal source resistance \(R_S \) 0.22 \(\Omega \)
 Grid resistor \(R_g \) 22 \(\Omega \)
 Grid resistor of next stage \(R_{g}' \) 0.68 \(\Omega \)
Supply voltage \(V_b \) 200 200 170 170 V
Cathode resistor \(R_k \) 0 0 0 0 \(\Omega \)
Anode resistor \(R_a \) 100 220 100 220 k\(\Omega \)
Anode current \(I_a \) 1.05 0.61 0.86 0.50 \(\Omega \)
Voltage gain \(V_o/V_i \) 50 55 49 53 -
Max. output voltage \(V_{o \text{ max}} \) 24 25 19 20 \(V_{RMS} \)
Distortion \(d_{\text{tot}} \) 1.5 1.4 1.4 1.4 %

MICROPHONY AND HUM

The triode section can be used without special precautions against microphony and hum in circuits in which an input voltage of minimum 10 m\(V_{RMS} \) is required for an output of 50 m\(W \) of the output stage. \(Z_g \) (50 Hz) = 0.25 \(\Omega \).

1) Measured at small input voltage.
2) At lower output voltages the distortion is proportionally lower.
3) At lower output voltages down to 5 \(V_{RMS} \) the distortion is approximately constant. At values below 5 \(V_{RMS} \) the distortion is approximately proportional to \(V_o \).
OPERATING CHARACTERISTICS

Pentode section

A.F. power amplifier, class A (measured with \(V_k \) constant)

<table>
<thead>
<tr>
<th>Supply voltage (V_{ba} = V_{bg2})</th>
<th>200</th>
<th>272</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid No.2 series resistor (non-decoupled) (R_{g2})</td>
<td>470</td>
<td>2200</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Cathode resistor (R_k)</td>
<td>330</td>
<td>650</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>Load resistance (R_{a*})</td>
<td>4.5</td>
<td>8</td>
<td>(k\Omega)</td>
</tr>
</tbody>
</table>

Grid No.1 driving voltage \(V_i \)	0	0.66	6.7	0	0.9	9.5	\(V_{RMS} \)
Anode current \(I_a \)	35	37	28	27	mA		
Grid No.2 current \(I_{g2} \)	7.8	13.3	6.5	10.8	mA		
Output power \(W_0 \)	0	0.05	3.3	0	0.05	3.5	W
Distortion \(d_{tot} \)	-	-	10	-	-	10	%

A.F. power amplifier, class AB, two tubes in push-pull

Anode supply voltage \(V_{ba} \)	200	250	V
Grid No.2 supply voltage \(V_{bg2} \)	200	200	V
Common cathode resistor \(R_k \)	170	220	\(\Omega \)
Load resistance \(R_{a*a*} \)	4.5	10	\(k\Omega \)

Grid No.1 driving voltage \(V_i \)	0	14.2	0	12.5	\(V_{RMS} \)
Anode current \(I_a \)	2x35	2x42.5	2x28	2x31	mA
Grid No.2 current \(I_{g2} \)	2x8	2x16.5	2x5.8	2x13	mA
Output power \(W_0 \)	0	9.3	0	10.5	W
Distortion \(d_{tot} \)	-	6.3	-	4.8	%

Frame output application

The circuit should operate satisfactorily with a peak anode current \(I_{ap} = 85 \text{ mA} \) at \(V_a = 50 \text{ V} \), \(V_g2 = 170 \text{ V} \), \(V_f = 6.3 \text{ V} \). The minimum available \(I_{ap} \) at end of life is:

- 70 mA at \(V_a = 50 \text{ V} \), \(V_g2 = 170 \text{ V} \), \(V_f = 5.5 \text{ V} \)
- 80 mA at \(V_a = 50 \text{ V} \), \(V_g2 = 190 \text{ V} \), \(V_f = 5.5 \text{ V} \).
LIMITING VALUES (Design centre rating system)

Triode section

- **Anode voltage**
 - V_{ao}: max. 550 V
 - V_a: max. 300 V

- **Anode peak voltage**
 - V_{ap}: max. 600 V

- **Anode dissipation**
 - W_a: max. 1 W

- **Cathode current, average**
 - I_k: max. 15 mA

- **Cathode current, peak**
 - I_{kp}: max. 100 mA

- **Grid resistor**
 - *for fixed bias*
 - R_g: max. 1 MΩ
 - *for automatic bias*
 - R_g: max. 3 MΩ

- **Grid impedance at 50 Hz**
 - Z_g: max. 0.5 MΩ

- **Cathode to heater voltage**
 - V_{kf}: max. 100 V

Pentode section

- **Anode voltage**
 - V_{ao}: max. 550 V
 - V_a: max. 300 V

- **Anode peak voltage, positive**
 - V_{ap}: max. 2.5 kV

- **Anode peak voltage, negative**
 - $-V_{ap}$: max. 500 V

- **Anode dissipation**
 - *for frame output application*
 - W_a: max. 5 W
 - *for A.F. output application*
 - W_a: max. 7 W

- **Grid No.2 voltage**
 - V_{g2o}: max. 550 V
 - V_{g2}: max. 300 V

- **Grid No.2 dissipation, average**
 - W_{g2}: max. 2 W
 - W_{g2p}: max. 3.2 W

- **Cathode current**
 - I_k: max. 50 mA

- **Grid No.1 resistor**
 - *for fixed bias*
 - R_{g1}: max. 1 MΩ
 - *for automatic bias*
 - R_{g1}: max. 2 MΩ

- **Cathode to heater voltage**
 - V_{kf}: max. 150 V

For curves of the ECL82 please refer to PCL82

1) Max. pulse duration 4% of a cycle with a maximum of 0.8 msec.
<table>
<thead>
<tr>
<th>page</th>
<th>sheet</th>
<th>date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1969.12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1969.12</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1969.01</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1969.12</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>1969.01</td>
</tr>
<tr>
<td>6</td>
<td>FP</td>
<td>1999.08.15</td>
</tr>
</tbody>
</table>